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Abstract 

We consider the steady state equations for a compressible fluid. Since we wish to solve for a range of 
speeds we must consider the equations in conservation form. For transonic speeds these equations are of 
mixed type. Hence, the usual approach is to add time derivatives to the steady state equations and then 
march these equations in time. One then adds a time derivative of the density to the continuity equation, a 
derivative of the momentum to the momentum equation and a derivative of the total energy to the energy 
equation. This choice is dictated by the time consistent equations. However, since we are only interested 
in the steady state this is not necessary. Thus we shall consider the possibilty of adding a time derivative 
of the pressure to the continuity equation and similar modifications for the energy equation. This can then 
be generalized to adding combinations of time derivatives to each equation since these vanish in the steady 
state. When using acceleration techniques such as residual smoothing, multigrid, etc. these are applied to 
the pressure rather than the density. Hence, the code duplicates the behavior of the incompressible equations 
for low speeds. 
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Introduction 

It is well known, that it is difficult to solve the compressible equations for low Mach numbers. For an 
explicit scheme this is easily seen by inspecting the time steps. For stability, the time step must be chosen 
inversely proportional to the largest eigenvalue of the system which, for slow flows, is approximately the 
speed of sound, c. However, other waves are convected at the fluid speed, u , which is much slower. Hence, 
these waves don't change very much over a time step. Thousands of time steps may be required to reach a 
steady state. Should one try a multigrid acceleration one finds that the same disparity in wave speeds slows 
down the multigrid acceleration. With an implicit method an ADI factorization is generally used so that 
one can easily invert the implicit factors. The use of ADI introduces factorization errors which again slows 
down the convergence rate when there are wave speeds of very different magnitudes [7] . 

We consider systems of the form 

Wt + fx + 9y = 0. 

Our analysis will be based on the linearized equations so that the conservation form does not appear in the 
analysis though it does appear in the final numerical approximation. This system is now replaced by 

P~1wt + fx + gy = 0, 

or in linearized form 

P-Iwt + Awx + Bwy=0, (1) 

with A and B constant matrices. 
In order for this system to be equivalent to the original system, in the steady state, we demand that 

P-1 have an inverse. This only need be true in the flow regime under consideration. We shall see later that 
frequently P is singular at stagnation points and also along sonic lines. Thus, the final preconditioner will 
be smoothed out in the vicinity of points where M=0 or M=l. 

Assuming the steady state has a unique solution, it does not matter which system we march to a steady 
state. We shall later see that for the finite difference approximations the steady state solutions are not 
necessarily the same and usually the preconditioned system leads to a better behaved steady state. 

The Incompressible Limit 

The time dependent two dimensional Euler equations can be written as 

Pt + uPx + vpy + pa2(ux + vy)    =    0 
Px_    _ 

P 
Py 

vt + uvx + vvy-\ =    0 
P 

St + uSx + vSy    =    0 

The form of this system is unchanged if we nondimensionalize the equations. From now on we shall 
assume that u,v,p,p are nondimensional quantities where the dimensional variables are nondimensionalized 
by u*,p«, />*. Following [4] we define e = ^ = M* . If the fluid is isentropic then 

Hence, as e goes to zero the speed of sound, a, goes to infinity and so the first equation in (2) reduces to 
UX   +   Vy    =   0. 

ut + uux + vuy + —    =    0 (2) 



It was pointed out in ([10], [11]) that these equations can be symmetrized by using || as the independent 

variable rather than dp . Hence, we define <j> by d(f> = ^|. For isentropic flow both p and a are functions only 

of the density and so using (3) this can be integrated explicitly. This gives <j> — £^r- • As the Mach number 
2     £ 

goes to zero <f> tends to infinity and therefore, Gustafsson and Stoor [4] subtract a constant and define 

2    € 

This amounts to specifying the constant in the integration of d<f> from dp. They then prove, using energy 
methods, that 

, OPincompressible 
a<f>*^ Tx  

Hence, <j> and all its derivatives behave as 0(M) as M —>• 0. Since p —y 1 and using the definition of d<j> this 
is equivalent to 

&Pcompressible     ^ OPincompressible V*-V 

We now consider how to construct a matrix artificial viscosity that will enable us to reach the incom- 
pressible limit. Consider 

P_1Wt + fx + 9y-h {{QlWx)x + (Q2Wy)y] (6) 

We wish to find the dependence of P and Qi on the Mach number as M —► 0 so that we get the proper 
convergence. We therefore consider the isentropic equations based on w — (<f>,u,v) see (4). This has the 
symmetric form 

(an    ai2    <*i3 \ 
a12    a22    a23      wx 

an    a23    a33 / 

(&11  *12  &13 \ 

6l2  &22  &23  Uj, = h [(QlWx)x + (Q2Wy)y] 
bll      &23  &33 / 

As M —>■ 0,ai2 and 613 = 0(1/'M) while d<^ = 0(M) while all other quantities are bounded. Hence, the 
leading terms in the first equation are all 0(1/M) while they are 0(1) for the second and third equations. 
Multiplying the first equation by M and taking the limit we get ux + vy for the space derivatives on the left 
hand side. Using d<j> = 0(M),du = 0(1), dv = 0(1) we see that a necessary condition for convergence as 
M —>■ 0 is that P~1,Qi have the form 

(OM   0(£)    0(i)\ 
P-1,Qi,Q2~      0(h     0(1)     0(1) (7) 

V  0(i)     0(1)     0(1)   ) 
The artificial viscosity matrices Qi are related to the preconditioned Consider the one dimensional 

equation 

«t + Pfx ~ (\QWT)X 

Let -A = §£• Since we are updating Pf we should have Q = PA. However, this is not in conservation form 
at the steady state. Instead we consider artificial viscosities of the form 

P-1ut + fx^(P-1(\PA\ux)x 

or 

ut + Pfx ~ P(P-\\PA\ux)x 



This would be equivalent to the original form if P were constant. Instead we have terms like PjP i+i/2 
that appear. 

We note that the conditions on the matrix (P-1|PD|)Comp are not satisfied by the non-preconditioned 
Roe matrices. Furthermore, even reasonable preconditioners need not satisfy these conditions. Consider, for 
example, the one dimensional system 

P~1wt + Awx = h(Qwx)x 

A reasonable choice is P_1 = |i4| i.e. P = \A~l\. In this case all the wave speeds of PA are ±1. Now 

Q = F-1\PA\ = \A\\\A\-1A\ = \A\~ 

0(1) 
0(1) 

0(1) 0(1) 
0(1) 

0(1)    0(1) 
0(£) 

i.e. Q is the nonpreconditioned Roe matrix which does not have the desired property. We therefore conclude 
that for an upwind difference scheme the Riemann solver should be based on the preconditioned system and 
not the original scheme. In [3] plots are shown to illustrate the greatly improved accuracy for low Mach 
number flows when the Riemann solver is based on the preconditioning. Characteristics in the boundary 
conditions these should be based on the characteristics of the modified system and not the physical system. 
Preconditioning is even more important when using multigrid than with an explicit scheme. With the original 
system the disparity of the eigenvalues greatly affects the smoothing rates of the slow components and so 
slows down the multigrid method, [6]. 

We conclude from the above remarks that the steady state solution of the preconditioned system may 
be different from that of the physical system. Thus, on the finite difference level the preconditioning can 
improve the accuracy as well as the convergence rate. 

Algorithm 

In terms of the primitive variables the preconditioning we consider is: 

(   ji    0    0   0 \ 
^10   0 

V 

+ 

+ 

aav 
fl2 0 1 0 
0 0 0 W 

/ u a 0 °\ 
a u 0 0 
0 0 u 0 

V° 0 0 u ) 

(v 0 a 0 \ 
0 V 0 0 
a 0 V 0 

\o 0 0 v j 

pa 
du 
dv 

\dS jt 

pa 

du 
dv 

\dS J 

( **■ \ pa     \ 

du 
dv 

\dS J 

= 0 

The nonpreconditioned case corresponds to ß2 — a2, a — 0. Let q = uu\ + VU2, then the eigenvalues of PD 
are given by 

do = q    (double) 

d± = |[(l-a + /?2/a2)± (8) 

/(l_a + /?2/a2)2+4(w2+w2 /?2 



For general curvilinear coordinates, in the "i" direction wi = y^, w2 = -x^. The time step is bounded by 
VOL 

d+  ' Our ultimate goal is to have a compressible code that solves the incompressible equations when the input 
Mach number is zero. So we wish to use variables that give us the same result as an incompressible code on 
all levels of the algorithm, e.g. flux computation, boundary conditions,acceleration techniques, etc. Hence, 
we choose as our basic variables 

Wp = 

( P' \ 
pu 
pv 

\ E' ) 

Q = 

I       pu       \ 
pu2 + p' 

puv 
V    pH'u    J 

pu 
pv 

\H> ) 

G = 

( pv \ 
puv 

>2 + 
V    pH'v    ) 

pv2 + p' 

dWp 

dt 

where 

= Pi 
dF_    dG 

dx      dy 

P-Poo 1 

E' cpP{T-T00)-{p-p03) + 
p(u2 + V2 

= E + poo -hoop 

pH'    =    E'+p' = E + p-hO0p 

We subtract the constants to keep the quantities in scale. Density is now calculated from the pressure and 
total energy. Because the modified energy E' also contains the density we get a quadratic equation for 
the density. Choosing the positive square root guarantees that the density is always positive. The residual 
smoothing and multigrid are applied to p' and E' rather than p and E. Thus, we duplicate the treatment of 
the variables in a pseudo-compressible incompressible code. 

I+A- 

/ 1-i 
-uB2 

-vB2 

G+hn 

uvB? 
G + hoo 

UBA 

G+Aco 
uvB? 

G+Aoo 
viB2 

G+ft«, 
VBA 

G + hoo 
-uB2 

G+h„ 
-vB? 

G+Aoo 
—Bd 

\ 

J 

where h = cpT = -^y, G — - - 2 

I _l_ 

~~ ß2 

G+hx       G+Aco       G+ha 

- Hl±£i, A = (G+ft°°)^2
) In the appendix we derive this form of Pp. 

Bi 

B2 

BA 

1        
^"(7-l)A 

1 

=      BXH' + 
a(u2 + v2) 

J2 



We choose ß2 = min {max [ßi(u2 + v2),0^in\ , a2} where ßmin should have the units of speed.   The 

choice of ßmin is discussed in the result section. In all cases a = min 

efficiently by defining S = A • (dp - ««taMeiiz«^ = _ge_   Then 

dPnew = S 

d(pu)new = d(pu)orig - B^uS 

d(pv)new = d(pv)orig - B-zvS 

dE„„„, = dEoria — BAS 

/8I(U
2
+V2) 

. We can evaluate this 

new orig       X>4*. 

These equations are given for the nondimensionalized variables. The nondimensionalization affects the 
convergence. In some codes, p and p are fixed in the far field. This implies that the speed of sound, a, is 
also bounded. As the Mach number goes to zero the pressure remains of order 1 while the velocities go to 
zero. Alternatively, one can nondimensionalize so that the velocities are of order 1 in the far field and then 
the pressure and speed of sound go to infinity, unless one subtracts an appropriate constant, 

The boundary conditions at the far field boundary, for subsonic flow, are based on the one dimensional 
theory of characteristics in the direction normal to the boundary. The preconditioning changes the form of 
these characteristic variables. In differential form they are given by 

1     / ß2 

Rl = du-2p-f2V{1~a~^) 

(u(l_a + ^))2+4(1-^)/?2j dp' 

n if/, ß2s 
R2 = du-2PT

2\u{l~a~^) 

+]/(u(l-a + ^))2+4(1-^)ß2j dp' 

where u is the component of the velocity normal to the boundary. If we consider low Mach numbers then 
we can approximate these by 

dp'      n dp' 

Pß Pß 

which is the same as for the incompressible case. Hence, at inflow Ri, v (tangential velocity) and S are 
specified while R% is extrapolated from the interior. We then calculate u (normal velocity) and the pressure 
from Ri and R% and then the density and total energy. At outflow the role of specified and extrapolated 
quantities is reversed. At solid boundaries the normal momentum equation is used which is not affected by 
the preconditioning. 

Computational Results 

The solution is advanced by a explicit Runge-Kutta method ([5],[8]) with residual smoothing and multigrid 
and no enthalpy damping. In all cases three levels of FMG multigrid were used with 50 Runge-Kutta cycles 
on the coarser grids. Hence, all plots show the convergence for two sets of 50 cycles and then the convergence 
on the finest mesh. The plots are of the convergence rate of the residual of the continuity equation. For the 
original code this was updated for the density while in the preconditioned code it is updated for the pressure. 
Nevertheless, in the steady state the residual of the continuity equation should be the same except for the 
change in the artificial viscosity between the two algorithms. All cases were run with a matrix viscosity. 

We first present two calculations for inviscid flow about a NACA 0012. We use a 224 x 32 C mesh 
and three levels of multigrid. The first calculation is for inflow conditions M = 0.01, a = 1.25° .  In this 



case we see that the residual asymptotes without the use of preconditioning and that the preconditioning 
dramatically increases the rate of convergence. The use of the preconditioning adds only a few percent 
to the total computational time. In the second case we consider the same geometry but with an inflow 
of M = 0.7,a = 1.25°. We have also done M = 0.8, a = 1.25° which results in a minor slowing of the 
convergence rate. The preconditioned residual is the dotted line and the original code is the solid line. 
Different parameters for the time step and residual smoothing are needed with and without preconditioning. 
For inviscid cases we can choose ßmin as zero while for the viscous cases ßmin = OA^/u^ + v^. For the 
transonic cases the lift and drag coefficients are changed only minimally by the preconditioning. 

We next consider viscous flow about a RAE2822 airfoil on a 320 x 64 C mesh and 5 levels of multigrid on 
the finest grid with M^ = 0.01, a = 2.79° using a Baldwin-Lomax turbulence model with Re = 6.5 million. 
The residual history is presented in figure 3. Again the standard code converges very slowly for these low 
Mach numbers. In figure 4 we present both the preconditioned residual (dashed line) and the original code 
(solid line) for the same case but MTO = 0.73. For viscous cases we choose ßmin = 0.4. Again, for the 
transonic cases the lift and drag are changed by about 2 percent by the preconditioning. For the very low 
Mach numbers the lift and drag coefficients never converged for the non-preconditioned algorithm and seem 
to have significant errors. The preconditioned code gives much better agrees for lift and drag for low Mach 
numbers. 

We conclude with a three dimensional case, inviscid flow about an ONERA wing. In figure 5 we display 
the convergence rate for the continuity equation (normalized by the initial residual) for Mach numbers .10, 
.05 and .01. We see that the convergence rate is independent of the inflow Mach number. In figure 6 we 
plot the lift coefficient for the same case. We again see that the lift coefficient is essentially independent 
of the Mach number except for some slight compressibility effects. Without preconditioning there are large 
variations in the lift for this set of Mach numbers. 



Appendix 

To find Pp we begin with the preconditioner P5 for the variables dWs = (-^,du,dv,dSY, with dS = pa' 

dp — a?dp. We then transform to dWs — (dp, du, dv, dSy by multiplying all elements in the first row of the 
matrix by pa and every element in the first column by -^. This gives 

p-l_ 

(   fs     0    0    0 \ 
^    1    0    0 
^010 

\    0     0   0    1 J 

(  g    0   0   0\ 
^100 

V  6    001/ 

We then transform to the conservation variables Wc = (p,pu,pv,Ey. This is given by dWc = T\dWs- Let 
r = 7-i 

/£     ° 
Ti = 

P 
0 

0 
0 

P 

-*   \ 

V %    pu   pv    -*§- ) Ml 
2 

/      TG 

T^ = 

-Tu   -Tv 

-    ? 0 ^ 
0 
0 

V rG - a2    -Tu    -Tv    T ) 

where G = " +"   and a is the speed of sound. This gives the preconditioner in conservation variables. 
Let Ql  =  ft-iy-')  , Q2 =   (7-i)(/>'-(i+.)«-)> Ä = g _ ! + (7 

conservation variables Pc = 7iPgT7   , 

/ 1 + GQi       -uQi -wQa 

uGQ2 1 - «2<52 -UVQ2 
vGQ2 -w^Q2 l-v2Q2 

GR           -uR -vR 

T)M 2f(/?'-«a) 
2<z2 a).   Then in 

Pc = 

V 

UQ2 

vQ2 

l + R ) 

We next change from wc = (p, pu, p, E) variables to w'c = (p, pu, p, E') variables, E' = E — phoo + p0 

dW' = T2dWc. 

T2 = 

P' - *c — 

(  l    ° 0 1 \ 
0       1 0 0 
0       0 1 0 

^  -/loo      0 0 1/ 

/ 1 + GQj -uQi -vQi -Qi   \ 
uGQ2 1 -u2Q2 —uvQ2 uQ2 

vGQ2 -uvQ2 l-v2Q2 VQ2 
\     RG -ul ? -vR l + R J 

Then P'c = T2(T1PSTJ1)T2] 



We finally change only the time derivatives to the variables Wp by dWp - TzdW'c. 

Tz = 

( r(G + Aoo) -ru   -Tv   T \ 
0 10      0 
0 0 10 

V      o ooi/ 

T3-i = 

( 

\ 

rcG+^co) 
0 

G + hov 
1 

G+hoo 
0 

G+Zioo 
0 

0 0 1 0 
0 0 0 1 

To summarize, we begin with 

s    dt °  dx 

and transform to 

dy 

*;^ + A^ + B™° 
dt dy 

0 

We then transform , in conservation form, to the prime variables where E is replaced by E' = E — h^p. 
>.-i _ P'-^T,-

1
 = r2riPs-1T1-

1r2-
1T3-

1. orPp = T3Pr1 = TsTariPsTr1^"1. Finally we then have that Pj; 
Thus, 

/ 

V 

A 

-uAB2 

-vAB2 

-AB4 

uß2 

h 

1 + 
uv 

u2ß2B2 

vß2 

uvß2B2 

32B2 

uß2B4 
h 

v2ß2B2 
h 1 + 

vß2Bt 
h 

§1 
K 

-uß2B2 

K 
-vß2B2 

ß2B4 I 

where all quantities were defined in the text. 
We next show how to convert any preconditioner given in streamline coordinates and (-^,du,dv,dS) 

coordinates to conservative variables in Cartesian (not streamwise) coordinates. We shall do this in two 
dimensions but the extension to three dimensions is straightforward. Assume we are given a preconditioner 
in streamline coordinates and (j%,du, dv, dS) coordinates Ps given by 

U = 

1   Pll      Pl2 
P21      P22 

0       0 
\   0       0 

0       0 
0       0 

P33    0 

0     P55 

define rotation matrices U, 

( l        ° 
0     cos9 
0    —sine 

\0        0 

0      0 \ 
sin0    0 
cose  0 

0      1 ) 

/I     0 
0  cose 
0    sine 

\ 0      0 

0       0 
—sine    ( 
cose   0 

0        1 

u- 

Let q2 = u2 + v2. To get the streamwise direction we shall choose 

u .   . v 
COS0 ■ 

yju2 + v2 \/u2 + v2 



-ll Then the preconditioner in Cartesian coordinates is given by Pear — U     PgU and 

* car — 

(   pn            A2f P^l 0 

-^21^      -r22-j2+/33p (P22--P33)fr 0 
p     v       (p          p    \ uv ^21 j     (,-r22--r33j-p- 

V    0               0 

p     V    _i_ p     u 
•r22p- + -r33^2 

0 
0 

P55 

V 

Oil     Ql2     Ql3        0     \ 
Q21    Q22   Q23     0 
Q31    Q32   O33     0 

0        0        0      Q55 / 

\ 

We next introduce conservative variables Wc as given in the appendix by the transformation T\.  The 
preconditioner for conservative variables is then given by Pc = T\PcaTT^ 

We now define the following quantities 

Y2 

Y3 

YA 

Y5 

G 

L 

Zu 

Z\2 

Z\3 

Z\A 

Zis 

Z52 

Z<ÖZ 

Z$4 

ZK 

UQ21 + VQ31 + WQAI 

V.Q22 + vQz2 + wQi2 

UQ23 + VQ33 + WQA3 

V.Q24 + VQ34 + U1Q44 

(7 - l)(Q55 - Qu) 

(T-l)g2 

2 

(7 - 1)P 

par 
q2Y5 Yi 

P. 
+ Q 55 

1       v    ,   <2l2 
pa* p 

1     v   ,  Ql3 —~vY5 +  
pa* p 

par /> 

#Zn + GYi - uY2 - vY3 - wY4 

r) 
ifZi2-(7-l)/»«yi+y2-u065 
if 213 - (7 - l)pvYi + Y3 - uQ55 

HZ14 - (7 - l)pwYi + y4 - u<355 

HZ15 + (7 - l)pQ55 



Then 

Zu Z\2 
uZu + GQ21 - Y2 uZ12 - RuQ21 + Q22 
vZn + GQ31 - Y3 vZ12 - RuQ31 + Q32 
wZn + GQn - Yi wZ12 - RuQn + Qi2 

\ zbl zS2 

Z\z Zu 
uZ13 - RvQ2i + Q23 uZu - RwQ2\ + Q24 
vZ13 - RvQ31 + Q33 "^14 - RwQzi + Q34 
wZls - RvQn + Qi3 wZu - RwQn + Q44 

Zss Zsi 

Zis 
uZls + RQ2i 
vZm + RQzi 
wZls +RQu 

Zss 
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NACA0012 M=0.01  a=1.25 

100 150 250 300 

Figure 1: Convergence rate for inviscid flow about a NACA0012 with MTO = 0.01 and a = 1.25° 

NACA0012 M=0.7 ct=1.25 

Figure 2: Same as figure 1 with Moo = 0.70 and a = 1.25°, dotted line is preconditioned scheme 
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RAE2822 M-.01 <x=2.79 

Figure 3: Convergence rate for viscous flow about a RAE2822 airfoil with M«, = 0.01 and a = 2.79° Solid 
line is original algorithm and dashed line is the preconditioned scheme 

RAE2822 M=.73 a=2.79 

Figure 4: Convergence rate for viscous flow about a RAE2822 airfoil with M^ = 0.73 and a = 2.79°. Solid 
line is original algorithm and dashed line is the preconditioned scheme 
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Figure 5: Convergence rate for inviscid flow about ONERA wing, M^ = .10, .05, .01, a — 3.06° 
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Figure 6: Lift coefficient for inviscid flow about a ONERA wing. 
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